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The Griffith-Irwin theory is based upon the concept of surface tension of a solid, which is 
a physical constant of the material and depends only on temperature [l and 21. According 
to this theory, the stress intensity factor at the edge of a moving equilibrium tension crack 
in a linearly elastic body is a constant of the material. By introducing an effective surface 
energy density instead of surface tension, Irwin and Orowan [3] extended the criterion to 
materials that are not ideally brittle (the concept of quasi-brittle fracture). It is appropri- 
ate to remark here that the effective surface energy density is not a constant of the materi- 
al, but generally depends on the rate of crack growth, the strain history, etc. 

The Griffith-Irwin approach is applied in this paper to the study of crack development in 
an arbitrary continnons medium. This approach, in conjunction with the formulation of the 
singular problem of the “fine structure” at the edge of the crack, permits the derivation of 
a condition determining crack growth in an arbitrary continuous medium (Section 1). This 
leads to the results that are already known for a linearly elastic solid (Section 21. 

The application of the general condition to certain plastic solids (Section 31 and to liue- 
arly viscoelastic solids (Section 4) is considered. 

1. The condition of neutral equilibrium at the edge of a crack. 
1.1. Let a continuous deformable body contain cracks which are surfaces of discontin- 

uity of displacement. We shall consider the strains of the medium to be small. For definite- 
ness we shall restrict our consideration to tension cracks with smooth surfaces, which, 
moreover, satisfy a condition of local symmetry. In accordance with this condition, in a 
small neighborhood of each point of the edge of a crack symmetry exists with respect to a 
plane tangent to the surface of the crack at that point. Without loss of generality it can also 
be considered that some vicinity of the crack surface near any point of the edge of the 
crack is free of traction. 

Let us consider the neighborhood of an arbitrarily chosen point 0 of the edge of the 
crack which is small compared to a characteristic linear dimension of the body. We intro- 
duce a system of rectangular cartasian coordinates x, y, t with origin at the point 0. Here 
the y axis is directed along the normal to the crack surface, the I axis is along the edge of 
the crack, and the x axis is directed into the body. The continuous medium in a small neigh- 
borhood of each point of the edge of the crack is in a state of plane strain. It is therefore 
possible to study the processes of deformation and fracture of the body in the small region 
near 0 with a two-dimensional picture (Fig. l), regarding the crack as rectilinear, semi- 
infinite, and free of traction all along its length. Then in the whole region, infinity inclu- 
ded, all the functions which characterize the stresses, displacements, temperature, etc. 
will be determined by the asymptotic behavior of the corresponding quantities in a small 
neighborhood of the point 0 of the original body (“the microscope principle”). We note that 
as a consequence of the condition of local symmetry, the normal displacement and the 
shearin 

We 9 
traction along the extension of the plane of the crack (for OD > x > 0) are zero. 
all restrict ourselves to consideration of those processes which involve only mech- 

anical and thermal energy. We denote by C a closed curve in the x-y plane encircling the 
point 0 (Fig. 1). The largest distance from an arbitrary point of the cnrve C to the origin 0 
is small relative to the characteristic linear dimension of the body. In what follows the 
curve C may be considered to be a circle without loss of generality. The radius of the cir_ 
cle with center at 0 tends to infinity in the problem of “fine structure”. Let us fix the 
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Fig. I 

curve C and study the process of straining and 
fracture of the medium D bounded by C. We denote 
by r and 8 plane polar coordinates with pole at the 
point 0; R is the radius of the circle C. 

In accordance with the law of conservation of 
energy, the work A ’ performed per unit time by the 
surface tractions on the curve C and by the body 
forces in D plus the thermal energy Q’ communica- 
ted to the body D per unit time‘across the curve C 
is equal to the rate of increase of the sum of the 
kinetic energy K ’ and the internal energy W’+ fl* 
of the body in the region D, i.e. 

A’ + Q’= a-+w+rr 

4’ = R 7 f (a, cos 8 + XXV sin 0) 24' +- 
0 

(z, cos 0 + Q, sin f3) u’] d0 + i p (F,u’ + F,v’) dx dy 
D 

Q’= Ry(qX cos 8 + q,' sin 6) de, II’ = 2~1 
0 

Ii+&\ P (u’” + ya2> dx dy, W - $1 pUdx dy 
D D 

(1.1) 

The following notation is introduced in these expressions: u and v are the components of 
the displacement vector along the x and y axes; a,, o,,, TV,, and O, are the components of 
the stress tensor; qi and q; are the components of the heat flow vector; F, snd F, are the 
components of the body forces; p and U are* respectively, the mass density and the inter- 
nal energy per unit mass of an element of the material located at the point fx, y) at time t; 
y is the surface energy per unit area (neglecting the latent heat of surface formation, it is 
equal to the surface tension of the material); 1’ is the rate of propagation of the crack along 
the x axis. The dot on a symbol denotes a derivative with respect to time. The total inter- 
nal energy of the body is obviously formed from the sum of the volume energy W and the sur- 
face energy III. 

All the functions which occur in (1.1) can in principle be found from the solution of the 
problem in the large for any model of a continuous body up to one undetermined constant 
which characterizes the position of the crack at the point 0 under consideration. Eq. (1.1) 
serves as a supplementary condition at the edge of the lengthening crack to determine this 
constant, and, thereby permits formulation of the problem of crack development in an arbit- 
rary continuum. 

We note that the length 1 of a propagating crack is a single-valued function of time t and 
may, therefore, be taken as the timelike variable in Eq. (1.1) if time is eliminated with the 
aid of the relation I= 2 (t). Th e condition (1.1) then assumes the following form: 

2n 

R 
s 

[(a, cos 8 + T, sin 0) s + (r, cos 0 + 6, sin 0) -!$I d0 + 
0 

++-Jk= cos 0 + qw* sin 8) d0 = + 1’2 -$ \ p [(~)’ + (%)“I dz dy + 
0 D 

+ 2r i-$- jpudxdy- ‘p F, 2 + F,$dxdy 
u I( (1.2) 

The derivatives with respect to I may clearly be computed from the singular solution in 
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the following way: 

af = lim f@. Y, l+W--f+, Y, 1) 
ar AI 

(1.3) 
A14J 

where the function f(z, y, I) is known from the singular solution and corresponds to the po- 
sition of the edge of the crack at point 0. 

The function f(x, y, I+ A 1) coriesponds to the position of the end of the crack at the 
point O,, which is displaced by the distance AL along the x axis (Fig. 1). 

The supplementary condition (1.2) at the edge of the crack will play an important part in 
what follows. It should he emphasized that in the general case all the terms in Eq. (1.2) 
have the same order. However, for various media and regimes of crack development they may 
play different roles. For instance, in the case of a quasi-static crack, the rate of eowth of 
which is considerably slower than the sound speed, the first term on the right-hand side of 
Eq. (1.2). representing the kinetic energy, can be neglected. 

1.2. Let us transform the condition (1.2) into a more convenient form. Let the singular 
solution corresponding to the position of the edge of the crack at point 0 have the form 

(1.4) 

U= ug (N, z, y), v = VI) (N, 2, Y), bx=(J,o (N, 5, Y)l..., pu =puo P. 2, I/) 

Here N is an undetermined constant; it can be found only from the solution of the prob- 
lem in the large and is some function of the shape of the body (in particular, of the length 
1 of the crack) and of the parameters of the external loading. In dynamic problems N also 
depends on the parameters which define 1 (t ) (e.g. on the crack velocity in the case of con- 
stant velocity crack growth). 

In the course of development of the crack, let the ed 
at a distance AL from the original position at point 0 

e 
( # 

of the crack reach the point 0, 
lg. 1). Then the function of the 

parameters of the problem N is incremented by AN. On the basis of (1.41, the singular sol- 
ution which corresponds to the edge of the crack at 0, has the form 

u =uo(N +AN, Z-AZ, y), u =uo(N +AN, z-AZ, u) 
(1.5) 

(T -o,,,(N +AN, x-Al, y) ,..., z- p U =pUo(N +AN, x-Al, Y) 

The law of conservation of energy (1.1) for the reg.dn D enclosed by the circle C can be 
written in the form 

AQ AK LW 
% +m-- AN 

_- 

Al = 0 (1.6) 
AN;=0 

where Ax denotes an increment in the quantity x. The coefficient of AN in (1.6) equals 
zero by virtue of the law of conservation of energy for a stationary crack. It follows from 
this that in the condition (1.2) the derivatives with respect to 1 must be computed for N = 
= const. Let us draw a semicircle C 
of radius R with center at E (z - - 

of radius R with center at 0, and a semicircle C, also 
Al, y = 01 (Fig. 1). oh e parts of the region D included 

Cz and C will be denoted by Dt, Dz, and Dj, respectively 
const the following Eq. holds up to small quantities of higher 

(1.7) 
Dr+Da Dt+Dr 

Here the values of the integrands are taken at the position of the edge of the crack indi- 
cated after the vertical line. Using (1.7) and the relation AB = AI cos 8 (Fig. 1). we find _ 

-$\ pUdxdy= lim ‘[ S 
'D 

Al-,0 Al D,rD,+D p"'oz dxdy- 1 @Jlodxdy] = 

I D,+Da+D, 

= -Fiy pUocos0d0 
0 

(1.8) 

In an entirely analogous manner we calculate the derivative of the kinetic energy in the 



506 G.P. Chsrcpanov 

region L1 with respect to 1 for N = const 
SX 

dK 
dl;= 

-_Sp 
s 

Q I m f 8oa + 
0 

(812 1 az)y cos 8 de (1.9) 

With the aid of Eqs. (1.4) and (1.5), we obtain 

au0 
5-z) 

aV0 

Nm~)np,t = - ar (1.10) 

The work of the body forces may be expressed in the foflowfng form, after making use 
of (1.8) and (1.10) 

Combining (1.8) to (l.ll), we may write the condition (1.2) in the form 

R’f [(Puck,-~~~)ctlse + -$(qs.eosO+qv sin8)-Ae]dt3== 2y 
0 

(1.12) 

A, = (ax cos 0 + aa sin e) (8~ / 3~) + fz, cos e + 5, sin 0) (~5% j 8~) 
In this expression all the ‘functions are computed directly from the sing&r solution cor- 

responding to the position of the edge of the crack at the point 0 (the subscript o is drop- 
pedfor simplicity), Each term in the integrand of (1.12) must have a singalarity at the edge 
of the crack of the type l/r in order that it make a finite contribution to the sum. A aingn- 
larity of higher order r-h ti> 1) is not permissible, since this would lead to a violation of 
the law of conservation of energy (1.12) ( we recall that in the singular solution under con- 
sideration there is no characteristic linear dimension). Terms with a singularity of lower 
order r-h (A < 1) will obviously drop out of Eq. (1.12). Another interesting conclusion fol- 
lows from Eq. (1.12); the role of the dissipative term (the third expression) becomes less 
important as the speed of the crack increases, while the significance of the dynamical term 
(the second expression) grows. 

The condition of limiting equilibrium at the crack tip (1.12) can also be preecnted in 
another convenient form in which only the displacement and stress fields in the vicinity of 
the edge of the crack appear. At each point of the continuous medium occupying the region 
D, the local law of conservation of energy f4] is satisfied 

(1.13) 
With the aid of the divergence theorem and of Eqs. (1.13) and (1.8)‘ we carry out the fol- 

lowing transformations 
*n 

(1.14) 
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Then, applying (l.ll), we may write Eq. (1.12) as 

RT [(3+K.-ppH)cose-~A,]de=2~ (1.15) 

0 
in which the notation 3, Ke, pH and A, 
tally, the terms 3, K, , pH and A 

is explained in the expressions of (1.14). Pbysi- 
are, respectively, the work of the internal forces, the 

kinetic energy, the work of the boiy forces, and the work of the surface tractions. 
We shonld emphasize that in the derivation of the limiting condition at the edge of the 

crack no appeel has been made to the mechanical properties of the continuum. Only the 
fact of continuity of the medium has been used. Obviously, if the left-hand side of Eq. 
(1.12) or (1.15) is smaller than 2y, the crack will not grow. 

The approach which has been a 
concept of quasi-brittle fracture [3 P 

plied can be generalized in a direction analogous to the 
. The quantity y must then be interpreted as the work of 

the irreversible deformations in the vicinity of the edge of the crack, which is not acconn- 
ted for in the model which has been adopted. 

2. Elastia body. 
2.1. We shall first examine the problem of isothermal development of quasi-static tcn- 

sion cracks in s homogeneous, isotropic material which is linearly elastic up to fracture. 
Any conversion between mechanical and thermal energy will be neglected. 

The singular solution for a semi-infinite tension crack for an isothermal process can be 
found by the Koloeov-Mnskhelishvili method [ 51 

(I, +op = zNr”* co.9 (‘/@), CT, = 2vNr”~*cos (l/$3) 

6, - ix._ = I/, Nr”!: [e-‘/d@ + 20 ‘/de + e -9’rS] 

_ 3 &Q + 2 (3-4~) e-W@] (2.1) 

where N is the stress intensity factor, E is Young’s modulus, and v is Poisson’s ratio. The 
stress intensity factor is determined from the solution of the problem in the large .and is 
some function of tire shape of the body and the boundary conditions. 

Under the assumption8 which have been made, the condition (1.12) has the form for elas- 
tic bodies 

&A 
(a,cos0 + Z, sine) Fz-- 

(2.2) 

The internal energy per unit volume is equal to the strain energy density 

pu = I/* (1 - 9) E-l (& + by)* + (1 + Y) E-’ (t; - cl&/) (2.3) 
Substitat~g the functions from (2.1) and (2.3) into Eq. (2.2) and computing the Integrals, 

we find 
nN2 = E r (1 - v”)-’ (2.4) 

This is Irwin’s well-known result [3] which determines the condition of limiting equili- 
brium at the edge of a tension crack in a linearly elastic body. We remark that Irwin’s meth- 
od [3] is applicable only for linearly elastic bodies. 

2.2. We now turn to the nonlinearly elastic, homogeneous, isotropic material having a 
tension crack. We shall consider that the medium is incompressible and obeys an arbitrary 
power-law relation between the shear stress intensity I and the shear strain intensity r. 
This dependence can serve as a convenient approximation for an arbitrary relation between 
I and r in the range of magnitudes which are characteristic of the vicinity of a crack tip. It 
can be shown that in this case of a power law, the variables in the equations of the theory 
of elasticity are separable, at least in Cartesian and plane polar coordinates. 

The basic equations of the problem are 161: 
Eqs. of equilibrium 

the compatibility Eq. 

(2.5) 
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(2.6) 

and the stress-strain relations 

er = - ee = 1/2uJX (or -a@), e,, = uJ” IT,@ (2.7) 

r=2aJ”+‘, 2J=1/@~--~,*+4~,, I’=21/e? +eB 
where Q and x are the elastic constants. 

rf3 

We seek the slngnlar solution for the problem in the form: 

or =-(~+l)-f~“lr(e}+(~+2~f(~)l 

60 = - (5 + 2) rV (01, z,e = rhf’ (9) (2.8) 

where f(8) is an arbitrary function, and x is an undetermined constant. It is ens to verify 
that the sqoilibrinm Eqa. (2.5) are then satisfied. We substitute Expressions of 2.8) into r 
Eqs. (2.7) for the strains, and then substitute the results into the Eq. of compatibility (2.6). 
We finally obtain the following ordinary differential equation for the determination of the 
function f(8): 

2 fh (x + 1) + 11 (f’aq’ = 

= [da/&s - 2h (x + 1) - iv (x + lyq [CD” 1/w--081 (2.9) 

4~a=4(f’)a+[(h+2)f-_(k+1)-i(r+hf+2f)la 
The sides of the crack are free of traction; this leads, in accordance to (2.8) to the 

boundary conditions 
f (9) = f’ (e) = 0 (0 = f Z) (2.10) 

The solution of the differential equation (2.9) subject to the boundary conditions (2.10) 
ia a problem of numerical analysis. It is curioue that the constant x which determines the 
character of the stress distribution near the edge of the crack and which is a peculiar type 
of eigenvaloe of the boundary-value problem (2.9), (2.10), can be found from physical con- 
siderations. 

For on the bauie of the condition (2.2) which is also obviously valid in this case, the 
integrand in (2.2) must have a singularity of the type l/r at the crack tip. 

In the case under stody, the internal energy density is equal to the strain energy density 

p U = 2a (x + 1) (x + 2)-l Jx+* 
(2.11; 

We find from this and Eqs. (2.7) and (2.8) 

h = - I f (X t 2) (2.12) 

In particular, in the linear problem, X = 0 and h = - %, as wss given above in Eqs. (2.1). 
Thus the stresses near a crack ti 

of the form r-u@+*) . The function f P 
in a material obeying a power law have a singalarity 

8) is found from the boundary-value problem (2,9), 
(2.10) up to an undetermined factor (if symmetry is also specified). The constant factor is 
completely determined by the supplementary condition (2.2). 

3. Plastic body. We shall now concern ourselves with the case of an elastic-perfect- 
ly plastic material. We shall assume that the curve which separates the elastic and plastic 
regions in the plane x = n (Fig. 1) entirely surrounds the edge of the tension crack and that 
unloading does not take place anywhere in the plastic region. The stresses near the edge of 
the crack can then be found using only the e 
tion I = 7r, where ~a is the yield stress in e f 

uilibrium eqaatione and the Miees yield condi- 
ear. 

83 
Let the assumed shear line field have the shape depicted in Fig. 2. We then have [7 and 

6, =,nz,, $ = (2 4 n) $3, a,=0 a+c+i>o; 

ax= o-f8sin28, a,=a+z,sin26 
(3.1) 

z, = z, COS 20, d = (1 + 3/art - 20) rt, wan > I f3 I > ‘/an) 

Q~=-c~, =~,,=o (+-vc-w) 
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From the Prandtl-Reuse equation and the condition of incompressibility we determine 
the velocity field in the vicinity of the edge of the crack 

u’=fr’(5-Y)-_fi’(2fy), u’= fI’(~-J!)+fr’(Z+y) (rlm>lgI>~l 

u,’ = fa” (e) ue: = f3’ (r) - f2. (0) (%Jr > IO I > ‘l4JI) (3.2) 

u’ = f4’ (5 - Y) + h’ (5.f Y), ~‘=f~(+p)--f;(~+~) wmi>w 

Here fl ; fi ‘, f3 * and f.+ l nre arbitrary functions; ur S and ~(4 are the components of the 
velocity vector in the I and 8 directions. From physical consrderations we require that the 
velocities be bounded in the vicinity of the edge of the crack. The displacements near the 
edge of the crack corresponding to Eqs. (3.2) cannot be written in the form (1.4). Therefore, 
it is not in general possible to use (1.12). 

We write the local law of conservation of energy which is satisfied at each oint of the 

plastic region of the elastic-perfectly plastic body for the case of plane strain P 41 

ZJ +aq; / ax+ aq; f ay = pug (3.3) 

where I” is the intensity of shear strain. With the aid of Eq. (3.3) and the divergence theo- 
rem, Eq. (1.2) can be written in the following form in the absence of body and inertia forces: 

ax 

R S[ (a, cos 8 + Zxy sin O) g+ (z,, 00s 8 + bI/ sin e)t$] de= 
0 

Z, S + dfiz 
n 

where D is a circular region lying wholly within the plastic zone. 
We shall examine the most important suecial case. that 

Fig. 2 

a?: 

of a plastic region whose characteristic linear dimensions 
are small compared to the characteristic linear dimension 
of the body. The stresses and strains in the plastic region 
(and also the form and dimensions of the plastic region) 
will then depend only on a single parameter N which is the 
stress intensity factor near the edge of a crack as compu- 
ted from the purely elastic problem under the assumption of 
no plastic region. In this case the method given above in 
Section 2 par. 2.2 can be applied, and the following condi- 
tion can be obtained from Eq. (3.4): 

R% s ’ rc0sede--R ’ S[ (CT, cos 8 + z,, sin e) g + 
0 

+ (rrn cos 0 +‘cs~ sin e) ~1 de = 2~ (3.5) 

By analyzing Eqs. (3.2) which give the velocities near the edge of the crack, we can con- 
clude from the boundedners of the velocities that only the function fz (8) provides a finite 
contribution in Eq. (3.5). The condition (3.5) can finally be written as: 

m/4 

c 

w/4 

2Rx, Ere co9 8 de -R 
s (3.6) 

TfrlP x14 
Substituting the stresses and displacemen; of (3.1) and (3.2) into (3.61, we find 

F = F,, -I- r I z, (3.7) 
3x14 

n =I 

where the function Fq is equal to F at the initial instant of loading. It characterizes the 
initial (residual) strarns, 

The condition (3.7) serves to determine the parameter N arising in the function f (8) and 
thereby permits us to formulate the problem of the development of tension cracks infnc:m- 
pressible elastic-plastic bodies. It is assumed in Eqs. (3.6) turd (3.7) that the radius R of 
the region D is considerably smaller than the characteristic linear dimension of the plastic 
region L (R << L). We should note that a rigorous development of the concept of quasi-brittle 
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fracture can be obtained only by combining the approach just considered with that applied 

in Section 2, which corresponds to R >> L. 

4. Viscoslsstic body. 

4.1. Let us consider an isotropic homogeneous viscoelastic body with tension cracks. 
The process of crack propagation will be considered as quasi-static and isothermal. The 
stress-strain relation for this case can be represented in the most general form 191 as 

E, = E-16, - E-3 (ay + a,), - q, = E-la, - E-h (a, + a,) - 

%Y = E-l (1 + v) r,,, E-’ [G, - v(Qx+~y)l =o (4.1) 

where E-t and Y are commutative linear operators involving time t which have the form 

E-‘f = [ E,, (t - z) f (z) dz, 
t 

vf = s VI (t - z) f (Q dr (4.2) 

The functions E, (r ) Ld v (.z ) belong to the class of gtneralieed functions. The relations 
(4.1) are written for conditiins of nlane strain. which obtain in a small neiahbcrhood of 
each point of the smooth edge of 8’ crack. . 

Problems of determining the stress and strain fields in visco-elastic solids with propa- 
gating cracks whose edges move with time are extraordinarily difficult for boundary condi- 
tions of general type. However, in one interesting case of plane strain a remarkable situa- 
tion occurs: the stresses ox, 0, and 7x,, in a finite, simply-connected body made of a vis- 
elastic material and having moving cracks are the same as in the corresponding elastic 
problem provided that only traction boundary conditions are applied. This analogy also 
holds in the case of an infinite or multiply connected body if the resultant force and moment 
of the external tractions applied to each of the bounding contours are individually equal to 
zero. The analogy is easily proved by writing the compatibility conditions for the transfer 
med strains (using Laplace transforms) ?‘2(, O+ c; ) = 0, shiftin 
to get v2(0, + u 

g 
) = 0, and recalling the we%-known results of & 

to the original quantities 
e two-dimensional theory 

of elasticity on t e independence of the state of stress on the elastic constants. 
In particular, it can be shown that the singular problem for the stress and strain fields 

near the edge of a crack has the following solution by analogy with Section 2: 

a, -t oU = 2Nr”IP cos (O/2), oz = 2vNr-‘1’ cos (e/2) 

sx _ irX!, zz r/qNr-‘, 2 [@is + 2 e i0/7, ~. ,--sie/2] 

&/dx -I- i&~/ax = l/4rJ’2E--l (1 + v) [Z (3 - 4~) NeWielz 1. 

+ Na5iQ/z _ 3Netei2] (4.3) 

Here the stress intensity factor, which in Eqs. (2.1) was a function of the boundary condi- 
tions and the shape of the body, is generally a function of time as well. This function is 
determined from the solution of the problem in the large. If the analogy presented above 
holds then obviously there will be no explicit dependence of N upon time. 

For the case under consideration, when there are no body forces the general condition at 
the edge of the crack can be written in the form 

zn. 

R (3cosO-&)df3=2’1 
c (4.4) 

_b 
Using Eqs. (4.1), (4.3), (1.12), and (1.14), we carry out the following calculations: 

t t 

3 = 
s 

(a,e’, -\- aI,e’u + 2txI,e’,U) dt = 
s 

[~&-l (1 + v) cfr -I- G,IF (1 + v) bay - 

0 
-(a, -/- y ~‘(1 -I- v)v (;'5 $ G'J + 2r,,E-‘(1 + v)~‘,~,] dt 

N 
s 

3 cos 8dO = n: 
s 

NE-I (1 -t v) (1 - 2v) N’dt (4.5) 

0 0 
277 2x 

R 
s 

-3,dO = Im ($ - iz,,,) (du/dx -1 i&/ax) dz + R 
s 

(ax + cy) sin 3 (au/ax) d0 = 

0 0 

= --/,nil'tc-'(I -+ v) (3- 2v)N (z = Reie) 
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where the contour integrala are taken in the counterclockwise direction. 
Finally, the condition of limiting equilibrium at the edge of a tension crack can be 

written in accordance with (4.4) and (4.5) as 

t 

2 
s 

NE-’ (1 ?_ v) (1 - 2v) N’dt + NE-’ (l + v) (3 - 2v) N = 2 14.6) 

0 

The condition (4.6) is generally, as is easy to-see, a nonlinear integro-differential equa- 
tion which serves to determine the function N (t ) and, thereby, the rule governing the prop- 
agation of a crack with time. 

In the case of an elastic body, when the operators E-1 and v are elastic constants (the 
reciprocal of Young’s modulus and Poisson’s ratio), it can readily be seen that Irwin’s COII- 

dition (2.4) is obtained from (4.6). 
4.2. As an illustrative example let us consider an incompressible generalized linear 

solid [4]. The o - u relation for stretching of a bar made of this material has the form 

N 

~ 

E’+ 5 E - (3 p)-t U’ + (3Tj)-4r (4.7) 
where ,U is the shear modulus, T is the viscosity coefficient, 
and [ is some material constant. 

It is not difficult to show that tbe kernel E (x) of the opera- 
N* ~~~~~~~~~ tor E-1 corresponding to the material of Eq. (4q7) is 

E, (t) = (3f.$-‘8 (5) + f/3 (11-r - &-‘) axp (-52) (4.8) 

where Ti(x ) is the delta-function defined by 
N=lt t t 

ST s 60 -qa(z)&=cT(t) 

Fig. 3 
0 

lowing very simple form: 
For incompressible materials, the condition (4.6) has the fol- 

NE-IN E= (4~) / (3 n) 
The nonlinear integral Eq. (4.9) 

(4.9) 
with the kernel (4.8) reduces to the following differential 

Eq.: 
- $prlN’ + ~@JJ~N = nqNzNN’ + npNa 

We find the solution of Eq. (4.10) 
(4.10) 

for t = to, 
1 (4.11) 

3) 
The curve N = N (t) corresponding to (4.11) has two asymptotes, N = 0 and N = N, (Fig. 

The derivative N l ( t ) which equals 
N*2 = 4n-‘y@ (4.12) 

N. = ILN (4‘rt15 - nNZ) 
n (nN2 + 4-r~) 

(4.13) 

is always negative for N > N, and is always positive’for 0 < N < N,. Therefore the curve 
N(t) consists of two parts, a monotonously increasing one (0 < N < N,) and a monotonously 
decreasing one Vv > N,). 

In the special case of a Maxwell solid, which is obtained from Eq. (4.7) by letting [-+ 0 
for finite p and of, Eq (4.11) assumes the form 

(4.14) 

For the Maxwell solid N,,= 0 and the increasing branch of the curve. disappears; N de- 
creases monotonously with time and tends to zero for t + 00 (for t + - w, N + m ). 

For tbe case of a Kelvin solid 

we obtain in precisely the same way 
(3 = 3Tp?’ + 3f.z (4.15) 

N2 4yp - nNZ L (i--to) -- 
Noz - 47p--nNo2 en (4.16) 

Here the curve N (t) has qualitatively the same shape as in the case of the generalized 
linear solid (Fig. 3), but the magnitude of N 2 equals 4y~,4 /R. 

Let us now see how an isolated rectilinegr crack of length 21 develops in an infinite 
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medium in two cases: (1) under s constant tensile stress p in the far field (directed perpeu- 
dicular to the line of the crack), and (2) with two equal and opposite concentrated forces P 
applied to the opposite sides of the crack at its center. On the basis of the analogy given 
in Section 4 par. 4.1, the stress intensity factors in the two cases are 

N= = ‘12p21, N= - ‘lgc-2P21-~ (4.17) 

In the first case, if No <N, at the initial instant of time, the crack grows. attaining 
(for p 3: cortst, as time approaches infinity) a critical length t* = 2Na2 p-2 (for a Kelvin or 
generalized linear solid). If, however, at the initial time N, > N, the crack grows dynami- 
cally, inasmuch as the equilibrium state is unstable (as p increases the length 1 of the 
crack decreases from (4.17)). In a Maxwell solid the equilibrium state will be unstable for 
all 

P’ n the second case, if at the initial time N <N, the crack will not develop (or will 
become smaller for reversible cracking until tge equilibrium value 1, = 3/ln*2P 2Nem2 is 
reached). If at the initial time No > N, the crack grows stably (for au infinitely long time), 
tending to the eqnilibrinm value 1,. 
its length for any initial No. 

For a Maxwell material the crack grows stably to infin- 

It is easy to see that in the general case if characteristic times of loading large com- 
pared to the relaxation time 8 = CC /V are considered, a Maxwell solid will fracture under 
any finite load, but cracks in a linear generalized or Kelvin solid will develop in exactly 
the saute way as in a linearly elastic solid (if the conditions for the analogy are satisfied), 
provided that the limiting value of N coincides with the corresponding limiting value for 
the incompressible linear1 
a Kelvin solid and 2(yW /n) J 

elastic solid. This limiting value is equal to 2 (yp /R 1 s for 
s for the generalized linear solid. 

It may be noted that the stud 
Kachanov [lo] and Williams [ 11 f 

of the kinetics of crack growth was undertaken by 
, who applied a less rigorous approach. 

BIBLIOGRAPHY 

i. Griffith, AA., The phenomenon of rupture and flow in solids, Phil. Trans.. Roy. Sot., 
Series A, Vol. 221,192O. 

2. Irwin, G.R., Analysis of stresses and strains near the end of a crack traversing a 
plate, J. Appl. Mech., Vol. 24, 1957. 

S: 
Irwin, CR., Fracture, in Handbuch der Physik, Vol. VI, Springer, Berlin, 1958. 
Boley, B.A., Wiener, J.H., Theory of Thermal Strsssea, English edition New York, 

1960. 
5. Muskltelishvili, N.I., Some Basic Problems of the Mathematical Theory of ,Elasticity. 

English transl. Groningen, Holland, 1953. 
6. Love, A.E.H., The Mathematical Theory of Elasticity, English transl. of 4th ed., 

Cambridge Univ. Press, 1927. 
7. Kachanov, L.M., Fundamentals of the Theory of Plasticity, GITTL, Moscow, 1956. 
8. Sekolovskii, V-V., The Theory of Plasticity, GITTL, Moscow, 1950. 
9. Ferry, J.D., Viacoelaatic Properties of Polymers. Original English edition, New York, 

1961. 
10. Kachutov, L.M., On the kinetics of crack growth, PMM, Vol. 25, No. 3. 
11. Williams, M.L., The Fracture of Viscoelaetic Material, in Fracture of Solids, New 

York, Vol. 20, 1963. 

Translated by A.R.h. 


